
Internal Medicine Research - Open Journal
Volume 6 Issue 1

Research Open

Internal Med Res Open J, Volume 6(1): 1–4, 2021 

Short Commentary 

Tissue Infiltration of Tumor-Associated Macrophages: 
Towards the Identification of Therapeutic Targets
Thibaut Sanchez1,2, Frédéric Lagarrigue2 and Véronique Le Cabec1*
1Team “Phagocyte architecture and dynamics” Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, 
France
2Team “Integrins in immune cells” Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France

*Corresponding author: Véronique Le Cabec, IPBS CNRS UMR 5089, 205 route de Narbonne 31077 Toulouse, France; Tel: 33-561175454; Fax: 33-561175994; 
E-mail: veronique.le-cabec@ipbs.fr

Received: February 18, 2021; Accepted: February 26, 2021; Published: March 03, 2021



Internal Med Res Open J, Volume 6(1): 2–4, 2021 

Véronique Le Cabec (2021) Tissue Infiltration of Tumor-Associated Macrophages: Towards the Identification of Therapeutic Targets

Macrophages are present in all body tissues. They play a key 
role in the clearance of pathogens, participate in the immune 
and inflammatory responses, and partake in tissue repair and 
homeostasis. However, tissue infiltration of macrophages also 
exacerbates pathological processes, such as cancers [1-4]. Tumor-
associated macrophages (TAMs) mostly originate from blood 
monocytes [5]. They are recruited to the tumor stroma at all stages of 
cancer progression [2,6] and can represent more than fifty percent of 
the tumor mass, thus representing by far the most abundant immune 
cell of the tumor stroma. Their number positively correlates with 
poor prognoses in most solid cancers as they are involved in several 
cancer-promoting events such as angiogenesis, lymphangiogenesis, 
immunosuppression, metastasis formation and resistance to therapies 
[7,8]. Therefore, the control of TAM infiltration is a current therapeutic 
strategy against cancers [9-11]. However, many questions regarding 
the mechanism of TAM tissue migration remain unresolved, which 
further hinders the development of novel therapeutic approaches.

Cell migration in tissues occurs in three dimensions (3D) 
that profoundly differs from 2D migration processes [12,13]. 
Two main mechanistically distinct migration modes have been 
described in 3D environments: amoeboid and mesenchymal [14]. 
The amoeboid movement is characterized by rounded, ellipsoid, 
or moderately elongated cells that form blebs or generate small 
actin-rich filopodia [15-17]. These cells do not require adhesion 
to the extracellular matrix (ECM), but rather use a propulsive and 
pushing migration mode [16,18,19]. This non-directional motility 
involves acto-myosin contractions and depends on the Rho–ROCK 
pathway. Cells migrating through the mesenchymal mode adopt an 
elongated and protrusive morphology [15,17,18]. The movement is 
directional, involves cell adhesion to the substratum, and requires 
proteases to degrade the ECM in order to create paths through 
dense environments. In macrophages, in contrast to the amoeboid 
movement, mesenchymal migration is not inhibited, but rather 
stimulated, by treatment with ROCK inhibitors [20,21]. Unlike 
lymphocytes, neutrophils and monocytes [3,22,23], macrophages 
share the capacity with only few cell types including tumor cells or 
immature dendritic cells (DCs) [17,24,25], to use both amoeboid 
and mesenchymal migration modes in 3D environments. In vitro 
studies revealed that macrophages tailor their migration mode to the 
architecture of the surrounding ECM [20,22,26-35]. In vivo in mouse 
tumors and ex vivo in human breast cancer explants, macrophages 
use the two migration modes depending on the tissue they infiltrate  
TAMs use the protease-dependent mesenchymal migration mode in 
mouse fibrosarcoma in vivo or human breast cancers ex vivo [20]. In 
contrast, in non-tumorous tissues such as the tumor periphery or in 
inflamed ear derma, macrophages use the amoeboid motility in vivo 
[20]. A chronic treatment with a broad-spectrum inhibitor of matrix 
metalloproteinases (MMPs) blocked the mesenchymal migration 
of macrophages, which correlates with a decrease in both TAM 
infiltration and tumor growth in vivo [20]. These findings strongly 
suggest that inhibition of TAM motility could be a way to impede 
their pro-tumor action and urge to identify specific effectors of the 
TAM mesenchymal migration as new targets in anti-cancer therapy.

Among effectors of TAM mesenchymal migration, MMPs need 

to be considered. MMP inhibitors have already been used to hamper 
tumor cell invasiveness by impeding tumor stroma remodeling and 
cancer cell escape from the primary tumor as well as decreasing 
angiogenesis [36,37]. Anti-tumor action of MMP inhibitors can now 
be explained by their action on TAM motility. Batimastat as well as 
its orally bioavailable derivative Marimastat were the first MMP 
inhibitors to enter clinical trials more than a decade ago [36]. However, 
clinical trials in patients with pancreatic, brain, lung or renal cancers 
were disappointing, essentially because these drugs were only tested 
in patients with advanced diseases despite the fact that studies in 
animal models had shown a most effective effect in treating early-stage 
diseases [38]. In addition, the primarily tested broad-spectrum MMP 
inhibitors were non-specific and did not differentiate between pro-
tumor and anti-tumor MMPs depending on the type of cancer [38]. 
Thus, the recent knowledge on MMP biology and their differential 
involvement in tumor progression [39] together with the development 
of new generation MMP inhibitors [40-42] and the involvement of 
MMP activity on TAM motility stress the need to reassess the use of 
such inhibitors in early cancer treatment in combination with other 
anti-cancer molecules.

Another future strategy to identify new potential therapeutic 
targets consists in identifying new specific effectors of TAM 
mesenchymal migration. Therefore, exhaustive approaches to reach 
a comprehensive understanding of this process will be necessary 
as recently described in a transcriptomic-based analysis [27]. This 
strategy leads to the identification of a large number of potential 
targets and the future challenge will be to validate or invalidate all 
the potential hits as effective actors of macrophage migration both 
in vitro and in vivo through functional studies. For such large-scale 
screening approaches, new cellular tools are needed. Many studies 
use bone marrow-derived macrophages (BMDMs) from wild-type 
(WT) and knock-out (KO) mice or macrophage cell lines such as 
murine Raw 264.7 cells or human U937, HL-60 or THP1 cells for 
this purpose. All these cell models have several drawbacks such as 
the use of numerous animals, the limited number of cells and the 
impossibility to generate stable mutants in primary cultures or the 
fact that macrophage cell lines are usually distantly related to blood-
derived macrophages or BMDMs particularly because they are cancer 
cells. Expansion of murine hematopoietic precursors that were 
transiently immortalized through a retroviral-delivery of an estrogen-
inducible form of the transcription factor Hoxb8 has been described 
[43] and validated for the study of hematopoietic cell biology [43-52]. 
The possibility to use the CRISPR/Cas9 technology in this long-term 
hematopoietic progenitor cell lines has enabled the creation of new 
genetically modifiable cell models [45]. During the last few years, 
ectopic expression of Hoxb8 has been used in several studies mainly 
focused on DC biology [45,47,52-54], but also to generate surrogate 
macrophages [43,52,55]. This new cellular tool that combines the 
unlimited proliferative capacity of conditionally Hoxb8-immortalized 
hematopoietic progenitor cells with the CRISPR/Cas9 technology 
represents a powerful tool to genetically manipulate macrophages and 
explore their functionalities in a broad range of applications [55].

In conclusion, the tissue migration of TAMs emerges as a new 
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therapeutic target to combat cancer diseases and the development 
of new cellular models to molecularly dissect the mesenchymal 
migration process should lead to the identification of new leads in 
anti-cancer therapy in the coming years.
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