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Abstract

Oxidative stress contributes to Haemolytic Anaemia in many species including dogs and cats, as well as in humans. Red cells are exposed to a continual 
oxidant challenge, both endogenously from within the red cells themselves and also exogenously from other tissues, and from ingested or administered 
oxidants. When the oxidative challenge exceeds the antioxidant provisions of the red cell, damage occurs in the form of lipid and protein peroxidation, 
cytoskeletal crosslinking, oxidation of haemoglobin to methemolglobin, and precipitation of denatured sulphhaemoglobin as Heinz bodies. These 
deleterious sequelae produce fragile red cells with reduced lifespan, and result in poorer oxygen delivery to tissues, intravascular haemolysis, anaemia, 
haemoglobinuria and jaundice. A number of features increase the risk of oxidant damage in dogs and cats. Thus dog red cells have low levels of the 
antioxidant enzyme catalase. Cat haemoglobin has at least four times as many readily oxidizable thiol residues compared to most species, whilst their 
hepatic capacity for glucuronidation is much reduced, which can result in greater accumulation of oxidants. Like humans, both species may also be 
exposed to excess oxidants from systemic diseases such as diabetes mellitus, hepatic lipidosis, hypophosphatemia and neoplasias. Iatrogenic oxidants 
include drugs such as acetaminophen and other non-steroidal anti-inflammatory compounds. Ingested toxins include heavy metals, particularly 
important in dogs with their increased propensity for scavenging. Ingestion of feeds containing products from Allium species of plants has also long been 
associated with red cell oxidative damage and Heinz body formation in both dogs and cats. Though less common than in humans, there are occasional 
congenital enzyme deficiencies which reduce the enzymatic oxidant defence of the red cells in these species. Treatment usually relies on removal of the 
oxidant challenge or support against the resulting anaemia. Specific antioxidants currently lack efficacy but analogy with human medicine suggests that 
a range possible antioxidants may be potentially beneficial.
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Introduction

Red cells occupy a unique position within the vertebrate body. 
When mature, they are enucleated and lack cytoplasmic organelles 
[1]. As such, they are therefore unable to carry out ribosomal protein 
synthesis or mitochondrial oxidative phosphorylation. They are 
dependent upon glycolysis (or the Emden-Meyerhoff pathway) for 
whatever ATP supply is required to maintain their osmotic integrity, 
through various ion pumps, and for other energy requiring events, 
like synthesis of reduced glutathione, one of their main antioxidant 
defences [2, 3]. All vertebrate red cells have the main task of carriage 
of blood gases, oxygen from respiratory tissues and carbon dioxide 
from metabolically active tissues. Notwithstanding, there are some 
surprising species differences in function, which are significant 
both physiologically and pathologically [1]. For example, most 
vertebrate red cells contain high levels of K+ and low levels of Na+, 
whose gradients are maintained through the functioning of the 
ATP-dependent Na+/K+ pump in the red cell membrane. This pump, 
together with a normally low passive “leak” to Na+ and K+ prevent 
osmotic swelling which would otherwise occur through the large 
cytoplasmic load of impermeable protein, especially haemoglobin 
(Hb), and other molecules, notably organic phosphates [4]. By 

contrast, dog and cat red cells are usually low in K+ and high in Na+. 
When mature – but not during development – their red cells lack Na+/
K+ pumping capacity and rather they use combinations of Ca2+ pumps 
and Na+/Ca2+ exchange proteins to maintain osmotic equilibrium [5]. 
An exception is high K+-containing red cells of certain Asian breeds 
for example, the Japanese Shibas and Akitas [6] which retain Na+/
K+ pumping capacity, and also high levels of the antioxidant reduced 
glutathione, throughout their lifespan. There are also other differences 
in physiology of dog and cat red cells pertinent to the subject of this 
review, and which are considered later.

Dog and Cat Red Cells

In the absence of shear stress, human red cells have the classic 
biconcave shape with a diameter of about 8 µm. Dog and cat red 
cells have a similar appearance but are somewhat smaller, at 7 µm 
and 5.5–6.3 µm, respectively [7]. Cat red cells, in particular, show a 
degree of anisocytosis and also tend to lack the central pallor which 
is easily recognizable in the more obviously biconcave shape of dog 
and human red cells. The oxygen-carrying pigment Hb is found in all 
vertebrates with the exception of a few species of Antarctic fish [8]. 
The latter live at subzero temperatures and thereby survive and carry 
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out aerobic metabolism using only the additional oxygen dissolved 
in plasma at these low temperatures. There are species variations in 
Hb, however. In this context, cat Hb is noticeable in having 8–10 
readily oxidizable sulphydryl groups [9, 10] whilst most other species 
including humans and dogs have only two main ones, represented 
by the highly conserved β93 cysteines [11, 12]. Cat Hb also readily 
dissociates from the usual tetrameric form to dimers [13] which have 
a greater tendency for autoxidation [14]. Heinz bodies, denatured, 
precipitated sulphHb, are a special feature of oxidative stress [14]. 
They are also found in the circulation of healthy cats, however, at 
up to 5–10 % red cells, presumably because of their greater number 
of oxidative sites in Hb and impaired red cell antioxidant defence, 
together with the poor ability of the non-sinusoidal feline spleen to 
remove Heinz body-containing red cells [15]. Cats also have two main 
Hbs A and B [9, 16]. HbA is most prevalent in domestic short- and 
long-haired cats have HbA (98 %) but a few breeds have greater levels 
of HbB (eg 10 % Persians and 14 % in Abyssinians, with as much as 50 
% in Devon Rexs) and geographically to occur {eg [17]}. The oxygen 
affinity of many species is reduced by organic phosphates, especially 
2,3-diphosphoglycerate (2,3-DPG or 2,3-biphosphoglycerate), but cat 
HbA is less responsive to the reduction in P50 whilst HbB does not 
respond at all [18, 19]. Cat red cells also have low levels of 2,3-DPG 
[20] which is understandable if it has little regulatory effect on oxygen 
affinity. Dogs have also several Hbs and more than twelve blood 
groups [21] but react like human Hb to 2,3-DPG.

Red Cell Metabolism

Mature red cells lack mitochondria and are therefore dependent 
on anaerobic glycolysis for ATP synthesis [3]. Compared with 
the citric acid (Kreb cycle) of aerobic respiration this is relatively 
inefficient, producing two molecules of ATP per glucose moiety 
(compared with thirty six in mitochondrial aerobic respiration). 
Glycolysis comprises ten enzymatic steps [1], although the main rate 
limiting enzymes are hexokinase and pyruvate kinase, at the start and 
end of the chain, respectively. In addition to ATP, the pathway also 
syntheses reducing power in the form of NADH. NADH is necessary 
to reduce methaemoglobin (metHb) using methaemoglobin reductase 
(or cytochrome b reductase) – one of the main red cell antioxidant 
defences. An off-shoot of the glycolytic pathway called the pentose 
phosphate shunt (or hexose monophosphate shunt) is used to make the 
reducing compound NADPH, a substrate for glutathione reductase – a 
second main antioxidant enzyme – which reduces oxidised glutathione 
(GSSG) back to reduced glutathione (GSH). Under normal conditions, 
glycolysis uses the majority of glucose metabolised by the red cell, with 
the pentose phosphate shunt accounting for only about 10 % of the 
flux. Inhibition of the first enzyme of the pentose phosphate shunt, 
glucose-6-phosphate dehydrogenase, by high NADPH / NADP ratios 
is responsible and this enzyme normally operates at only a low level of 
its maximum capacity. Under conditions of oxidative stress, however, 
as NADPH / NADP ratios fall, glucose is preferentially channelled 
along the pentose phosphate shunt. Interestingly, deoxyHb which 
preferentially binds to the cytoplasmic tail of the anion exchanger (or 
Band 3) displaces glycolytic and other enzymes so that deoxygenated 
red cells carry out more glycolysis, oxygenated ones produce more 

NADPH [22, 23] providing a physiological switch to channel glucose 
through one or other pathways. In addition, the red cells of some 
species are less permeable to glucose, eg some fish and pigs [1, 24, 
25]. In these cases, the pentose phosphate shunt pathways can be 
used as an alternative to glycolysis for synthesis of ATP, metabolising 
nucleosides, such as inosine and metabolites of ribose, which enter 
into the distal part of the glycolytic pathway.

The third red cell metabolic pathway of note is the Rapaport-
Luebering shunt (1950s). This uses the enzyme biphosphoglycerate 
mutase to produce 2,3-DPG (2,3-BPG) – apparently confined to cells 
of the erythroid lineage and placental cells [26] and accounts for about 
20 % of the glucose passing through glycolysis. There is a metabolic cost 
to this, as the Rapaport-Luebering shunt bypasses phosphoglycerate 
kinase with the loss of one ATP of the two molecules of ATP from 
metabolism of glucose. Congenital enzyme deficiencies in the red 
cell metabolic pathways have been well described in humans [2, 27]. 
Some genetic deficiencies have also been described in dogs and cats  
[Table 1]. Whilst oxidative threat is not the root of these conditions, 
a defect in antioxidant defences will accompany the inadequacies 
in glucose metabolism which underlie the loss of ATP, and which 
represents the main cause of red cell instability.

Table 1. Some inherited causes of haemolytic anaemia in dogs and cats.

Catalase American foxhound, beagle [55]

Hereditary elliptocytosis Band 4,1 deficiency [56]

Hereditary spherocytosis Autosomal recessive trait in chondrodysplastic 
Alaskan malamute dwarf dogs

Hereditary stomatocytosis Schnauzers [57,59]

Methaemoglobin redutase Dogs (toy Alaskan Eskimo, miniature poodle, 
cocker/poodle cross) and cats – domestic short 
hair [60,61,62]

Osmotic fragility syndrome Abyssinian, Somali, Siamese and domestic short 
hair cats [63–64]

Phosphofructokinase (PFK) 
deficiency

English springer spaniels, American cocker 
spaniels, whippets [65–66]

Pyruvate kinase (PK) 
deficiency

Basenjis, Cairn terrier, West Highland white 
terriers, beagles, cairn terriers, miniature 
poodles, dachshunds, Chihuahus, American 
Eskimo toy dogs, pugs, American Labrador 
retrievers; Abyssinian, Somali and domestic 
shorthaired cats [67]

Oxidative Challenge

Red cells are also subject to considerable oxidative stress 
throughout their lifespan. Oxidative challenges arise from several 
underlying conditions and sources [28, 29]. First, oxygen is potentially 
toxic and their function as the main oxygen-carrying cell of the body 
exposes them continually to the threat of oxygen damage. Whilst 
in other tissues, there is always some slippage of oxygen away from 
its mitochondrial function in aerobic respiration, which generates 
superoxide anion and other free radicals, in red cells, the iron-
containing Hb is the major source of reactive oxygen species [29, 
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30]. The ferrous Fe2+ in heme groups is potentially unstable and liable 
to autoxidation to ferric Fe3+, generating superoxide and, through 
dismutation, hydrogen peroxide [31] which may be removed by one 
of the important red cell antioxidant enzymes, catalase. Heme iron 
is also able to take part in the Fenton and Haber-Weiss reactions to 
generate hydroxyl and other free radicals [2, 32]. Red cell NADPH 
oxygenase is a further source of endogenous oxidants [28, 33]. Around 
0.5–3% red cell haemoglobin is oxidized daily [34], producing a 
constant source of methaemoglobin, although levels are usually kept 
below 1% through the reducing action of methaemoglobin reductase 
[35]. In addition, there is the threat from exogenous oxidants which 
may enter the circulation from other tissues, for example following 
ischaemia / reperfusion [36], or the action of xanthine oxidase on 
hypoxanthine [37] or also via ingested or iatrogenic oxidants [7]. Cat 
Hb more susceptible to oxidants (Harvey & Kaneko 1976), especially 
feline HbB cf feline HbA. Counterintuitively, dogs with red cells 
containing high levels of K+, and also high levels of the antioxidant 
reduced glutathione notably Japanese breeds [38] appear more 
susceptible to oxidative damage than the more common low K+ ones. 
A number of systemic diseases are associated. Some of these include 
diabetes mellitus, hepatic problems, hyperthyroidism (especially in 
cats), neoplasia, severe hypophosphataemia (eg refeeding syndrome 
in cats) and uraemic syndrome.

Oxidative red cell damage from ingestion of products from 
Allium species (onions, garlic and related plants – see [39] for a list 
of plants) are particularly heavily implicated in the case of dogs and 
cats. Onion poisoning in dogs has been recognised since the 1930s 
[40] and is due mainly to sulphur-containing organic compounds, 
which give the characteristic odour of these foods [39]. These 
compounds are not destroyed by cooking or spoilage. Metabolites 
particularly propylsulphides are implicated in onion-induced 
oxidant damage of red cells in dogs and cats [41]. Animals probably 
need to consume about 0.5 % of their body weight in onions to be 
affected [42], though of course the wet weight and the concentration 
of the active ingredient will be very variable between feedstuffs. 
Cats are less frequently affected by Allium spp. toxicity because of 
their dietary preferences though cases do occur, for example in ill 
animals fed on human baby food [43]. Ironically, the same sulphur-
containing organic compounds which cause harm to dogs and cats 
are associated with the therapeutic benefits of Allium spp. in humans 
[44]. Cats also have low hepatic glucuronidation capacity. They lack 
many uridine diphosphate glucuronyltransferases (UGTs) which 
makes them particularly susceptible to a number of iatrogenic drugs. 
They thus have a very poor ability to metabolise compounds such 
as acetaminophen and salicylic acid [45], for which there is no safe 
dose. In both dog and cat, overdoses with acetaminophen leads to the 
accumulation of metabolites such as p-aminophenol (PAP) in their red 
cells, which lack N-acetyltransferase 2 (NAT2) to remove it. The result 
is methaemoglobinaemia [46]. Overdose in other species including 
humans, by comparison, is associated with hepatic toxicity induced 
by the metabolite N-acetyl-p-benzoquinoneimine (NADPQI) rather 
than oxidative damage to red cells. Heavy metals are also implicated 
in oxidative damage to red cells, particularly in dogs. Commoner 
causes include zinc toxicity (through ingestion of toys, bolts or coins 

containing high levels of zinc) [47] or iron overload. The latter is 
usually iatrogenic through iron injections or repeat transfusions. Some 
other common iatrogenic oxidants and toxins are listed in [Table 2], 
with a more complete list is provided in Haematology texts eg [7].

Table 2. Some toxins and iatrogenic oxidants causing haemolytic anaemia in dogs and 
cats.

Acetaminophen (paracetamol)

Acetylsalicylic acid (aspirin)

Allium spp.

Benzocaine

Carprofen and other non-steroidal anti-inflammatories

Copper

Iron overload

DL-methionine

Methylene blue

Phenylhydrazine

Propylene glycol

Vitamin K and vitamin K antagonists

Zinc

Red Cell Antioxidant Defence

Notwithstanding the potential oxidative peril and their limited 
capacity for repair by protein synthesis, red cells must survive for 
some one hundred and twenty days in the case of humans and dogs, 
and about seventy days in the case of cats. Although the red cell is 
well equipped with antioxidant defences, problems arise when 
oxidative challenge exceeds the red cell antioxidant capacity. The 
result is oxidative damage to membrane lipids and proteins, and to 
haemoglobin itself. Oxidised haemoglobin, methaemoglobin (heme 
Fe3+ instead of the normal Fe2+), is unable to carry oxygen and is 
also liable to denaturation and precipitation as insoluble sulphHb 
containing Heinz bodies, or to form eccentrocytes in which the 
Hb is restricted to one side of the cell [13]. Other changes include 
crosslinking of the cytoskeleton, thiol oxidation, depletion of reduced 
glutathione and cation imbalance. The result is a fragile red cells with 
impaired rheology liable to intravascular haemolysis with anaemia, 
haemoglobinuria and poor oxygen-carrying capacity [48].

Antioxidant provision of red cells is provided by both enzymatic and 
non-enzymatic pathways. Five enzymes are heavily involved: catalase 
which reduces hydrogen peroxide to oxygen and water, glutathione 
reductase uses NADH to reduce oxidised methaemoglobin, superoxide 
dismutase scavenges superoxide anions generating hydrogen peroxide 
and oxygen in the process, and glutathione peroxidase uses NADPH 
to remove both red cell hydrogen peroxide and organic peroxides [49], 
as does membrane-associated perioxiredoxin-2 which can be reduced 
via reduced glutathione, vitamin C or thioredoxin. Activities of these 
enzymes do vary between species [50–52]. Catalase activity in the 
red cells of difference species is very variable [50, 53, 54]. Expression 
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in dog red cells occurs at about a tenth of the amount in humans 
whilst its specific activity is around a third that of human catalase 
[55]. As a result, overall catalase activity in dog red cells is a thirtieth 
that in humans [53, 55]. Non-enzymatic defence includes reduced 
glutathione, vitamin C and vitamin E. Therapeutic antioxidants 
include dosing with N-acetyl cysteine, vitamin C and E. None are 
particularly effective for rapid protection [39]. There is a need for 
more efficacious compounds. These must be effective in the short term 
and protect red cells from further oxidative damage and haemolysis 
without the requirement for prolonged metabolism. Some human 
compounds are listed in [Table 3].

Table 3. Antioxidants used in chemoprophylaxis of sickle cell disease in humans.

Therapy Effect References

Acetyl-L-carnitine Protects red cells from peroxidative 
damage and maintains normal shape at 
lower oxygen tensions

[68]

N-Acetylcysteine Increases levels of reduced glutathione 
and decreases haemolysis

[69,70]

Flavonoids 
(quercetin, rutin & 
morin

Show inhibitory effect on haemolysis 
due to thiol group oxidation

[71]

Glutamine Increases NAD redox potential and 
NADH levels

[72,73]

Hydroxyurea Reduces markers of oxidative stress, 
decreases lipid peroxidation and 
increases level of antioxidant enzymes

[74,75]

Iron chelators: 
deferiprone & 
deferasirox

Remove iron from the membrane of red 
cells, decrease lipid peroxidation and 
increase antioxidant capacity 

[76,77]

α-lipoic acid Protects red cells from peroxyl radical 
induced haemolysis, increases levels 
of reduced glutathione and increased 
antioxidant gene expression

[78,79]

Melatonin Increases levels of antioxidants and 
reduces rate of haemolysis

[80]

Statins Protects against oxidative damage by 
increasing nitric oxide metabolites and 
C-reactive protein

[81,82]

Vitamin C and E Decreases production of reactive oxygen 
species, increases levels of reduced 
glutathione and reduces haemolysis

[83]
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